Simple Linear Regression

Estimated time needed: 60 minutes

Objectives

After completing this lab you will be able to:

* Use scikit-learn to implement simple Linear Regression

¢ Create a model, train it, test it and use the model

Importing Needed packages

import piplite

await piplite.install(['pandas’])

await piplite.install(['matplotlib'])
await piplite.install(['numpy'])

await piplite.install(['scikit-learn'])

import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
%matplotlib inline

Downloading Data

To download the data, we will use !'wget to download it from IBM Object Storage.

path= "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDevelo

from pyodide.http import pyfetch

async def download(url, filename):
response = await pyfetch(url)
if response.status == 200:
with open(filename, "wb") as f:
f.write(await response.bytes())

Understanding the Data

FuelConsumption.csv:

We have downloaded a fuel consumption dataset, FuelConsumption.csv , which

contains model-specific fuel consumption ratings and estimated carbon dioxide

emissions for new light-duty vehicles for retail sale in Canada. Dataset source

MODELYEAR e.g. 2014

MAKE e.g. Acura

MODEL e.g. ILX

VEHICLE CLASS e.g. SUV

ENGINE SIZE e.g. 4.7

CYLINDERS e.g 6

TRANSMISSION e.g. A6

FUEL CONSUMPTION in CITY(L/100 km) e.g. 9.9
FUEL CONSUMPTION in HWY (L/100 km) e.g. 8.9
FUEL CONSUMPTION COMB (L/100 km) e.g. 9.2
CO2 EMISSIONS (g/km) e.g. 182 --> low --> 0

Reading the data in

await download(path, "FuelConsumption.csv")
path="FuelConsumption.csv"

df

= pd.read_csv("FuelConsumption.csv")

take a LooR at the dataset

df.

head()

MODELYEAR MAKE MODEL VEHICLECLASS ENGINESIZE CYLINDERS TRANSMISSIOI

2014 ACURA ILX COMPACT 2.0 4
2014 ACURA ILX COMPACT 2.4 4
2014 ACURA ILX COMPACT 1.5 4
HYBRID ’
MDX
2014 ACURA AWD SUV - SMALL 35 6
RDX
2014 ACURA AWD SUV - SMALL 35 6

Data Exploration

Let's first have a descriptive exploration on our data.

summarize the data
df.describe()

AS

M

AV

AS

AS

MODELYEAR

count 1067.0
mean 2014.0
std 0.0
min 2014.0
25% 2014.0
50% 2014.0
75% 2014.0
max 2014.0

ENGINESIZE

1067.000000

3.346298

1.415895

1.000000

2.000000

3.400000

4.300000

8.400000

CYLINDERS

1067.000000

5.794752

1.797447

3.000000

4.000000

6.000000

8.000000

12.000000

Let's select some features to explore more.

cdf = df[["'ENGINESIZE', 'CYLINDERS', 'FUELCONSUMPTION_COMB', 'CO2EMISSIONS']]

cdf.head(9)

FUELCONSUMPTION_CITY FUELCONSUMP?

1067.000000

13.296532

4.101253

4.600000

10.250000

12.600000

15.550000

30.200000

ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB CO2EMISSIONS

We can plot each of these features:

viz.hist()
plt.show()

2.0

2.4

1.5

3.5

3.5

3.5

3.5

3.7

3.7

4

4

8.5

9.6

5.9

1.1

10.6

10.0

10.1

196

221

136

255

244

230

232

255

267

10

CYLINDERS ENGINESIZE

400
300 - 200 +
200 1
100 A
100 -
0- 0-
4 6 8 10 12 F 4 6 8
COZEMISSIONS FUELCONSUMPTION_COMB
T T 300 1 I I T i —
200 11—

100 1+

100 200 300 400 500] 10 15 20 25

Now, let's plot each of these features against the Emission, to see how linear their

relationship is:

plt.scatter(cdf.FUELCONSUMPTION_COMB, cdf.CO2EMISSIONS, color="blue')
plt.xlabel("FUELCONSUMPTION_COMB")

plt.ylabel("Emission")

plt.show()

500 7

450 ~

400 ~

350 +

300

Emission

250 7

200 ~

150 +

100

T
5 10 15 20 25
FUELCONSUMPTION_COMB

plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color="'blue')
plt.xlabel("Engine size")

plt.ylabel("Emission")

plt.show()

500 7

450

400

350 ~

300

Emission

250 7

200 A

150

100

Engine size

Practice

Plot CYLINDER vs the Emission, to see how linear is their relationship is:

write your code here

plt.scatter(cdf.CYLINDERS, cdf.CO2EMISSIONS, color='red')
plt.xlabel('CYLINDERS')

plt.ylabel('CO2EMISSIONS")

Text(0, 0.5, "CO2EMISSIONS')

500 1 3
450 -
&
400 - !
] 8 i
v 350 @
Q
i
¥ 300
=
LL
™
S 250 ' ®
200 1
L]
1501 ¢
100 -
4 6 8 10 12

CYLINDERS

» Click here for the solution

Creating train and test dataset

Train/Test Split involves splitting the dataset into training and testing sets that are
mutually exclusive. After which, you train with the training set and test with the
testing set. This will provide a more accurate evaluation on out-of-sample accuracy
because the testing dataset is not part of the dataset that have been used to train the
model. Therefore, it gives us a better understanding of how well our model generalizes

on new data.

This means that we know the outcome of each data point in the testing dataset,
making it great to test with! Since this data has not been used to train the model, the
model has no knowledge of the outcome of these data points. So, in essence, it is truly
an out-of-sample testing.

Let's split our dataset into train and test sets. 80% of the entire dataset will be used for
training and 20% for testing. We create a mask to select random rows using

np.random.rand() function:

msk = np.random.rand(len(df)) < 0.8
train = cdf[msk]
test = cdf[~msk]

Simple Regression Model

Linear Regression fits a linear model with coefficients B = (B1, ..., Bn) to minimize the
‘residual sum of squares' between the actual value y in the dataset, and the predicted
value yhat using linear approximation.

Train data distribution

plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color="blue')
plt.xlabel("Engine size")

plt.ylabel("Emission™)

plt.show()

500 -
450 -
400 -
350 -
' .'
300 - ®
]

250 7

Emission

200 ~

150 +

100 -

Engine size

Modeling

Using sklearn package to model data.

from sklearn import linear_model

#This Lline creates an instance of the LinearRegression class, which will be used to
regr = linear_model.LinearRegression()

"""Extracting the 'ENGINESIZE' column from the training dataset (train)

and converting it to a NumPy array (train_x). Similarly,

extracting the 'CO2EMISSIONS' column and converting it to another NumPy array (trai
These arrays will be used as input features (independent variable)

and target values (dependent variable) for training the linear regression model."""
train_x = np.asanyarray(train[['ENGINESIZE']])

train_y = np.asanyarray(train[['CO2EMISSIONS']])

"""This line trains the linear regression model using the training data. The model
#learns the relationship between the engine size ('ENGINESIZE') and CO2 emissions (
regr.fit(train_x, train_y)

The coefficients

print ('Coefficients: ', regr.coef_)

print ('Intercept: ',regr.intercept_)

Coefficients: [[38.84847505]]
Intercept: [126.50294311]

from sklearn import linear_model

regr2 = linear_model.LinearRegression()

train2_x = np.asanyarray(train[['FUELCONSUMPTION_COMB']])
train2_y = np.asanyarray(train[['CO2EMISSIONS']])
regr2.fit(train2_x, train2_y)

print ('Coefficients: ', regr2.coef_)

print ('Intercept: ',regr2.intercept_)

Coefficients: [[15.9774728]]

Intercept: [71.44763819]
As mentioned before, Coefficient and Intercept in the simple linear regression, are the
parameters of the fit line. Given that it is a simple linear regression, with only 2
parameters, and knowing that the parameters are the intercept and slope of the line,
sklearn can estimate them directly from our data. Notice that all of the data must be

available to traverse and calculate the parameters.

Plot outputs

We can plot the fit line over the data:

For Enginesize and Emissions

plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color="'blue')

plt.plot(): This function is used to create a plot in matplotlib.
train_x: This is the independent variable (engine size) from the training data.

regr.coef_[@][@]: This part retrieves the coefficient (slope) of the linear regress
regr.coef_ is a 2D array, and [@][@] accesses the actual coefficient value.

regr.intercept_[0]: This part retrieves the intercept of the linear regression mode

'-r': This argument specifies the style of the plot. -r means a solid red line.

plt.plot(train_x, regr.coef_[0][@]*train_x + regr.intercept_[0], '-r')
plt.xlabel("Engine size")
plt.ylabel("Emission™)

Text(0, 0.5, 'Emission')

450

400

350

300 A

Emission

250 ~

200 A

150

100 A

T
1 2 3 - 5 6 7 8
Engine size

For Fuel Consumption and Emissions

plt.scatter(train.FUELCONSUMPTION_COMB, train.CO2EMISSIONS, color="blue')
plt.plot(train2_x, regr2.coef_[0][@0]*train2_x + regr2.intercept_[0], '-r')
plt.xlabel("Fuel Consumption™)

plt.ylabel("Emission")

Text(9, 0.5, 'Emission')

300

450

400

350 A

300

Emission

250 +

200

150 A

100

T
5 10 15 20 25
Fuel Consumption

Evaluation

We compare the actual values and predicted values to calculate the accuracy of a
regression model. Evaluation metrics provide a key role in the development of a
model, as it provides insight to areas that require improvement.

There are different model evaluation metrics, lets use MSE here to calculate the

accuracy of our model based on the test set:

e Mean Absolute Error: It is the mean of the absolute value of the errors. This is the

easiest of the metrics to understand since it’s just average error.

®* Mean Squared Error (MSE): Mean Squared Error (MSE) is the mean of the squared
error. It's more popular than Mean Absolute Error because the focus is geared
more towards large errors. This is due to the squared term exponentially
increasing larger errors in comparison to smaller ones.

* Root Mean Squared Error (RMSE).

® R-squared is not an error, but rather a popular metric to measure the performance
of your regression model. It represents how close the data points are to the fitted
regression line. The higher the R-squared value, the better the model fits your
data. The best possible score is 1.0 and it can be negative (because the model can

be arbitrarily worse).

For Enginesize and Emissions

from sklearn.metrics import r2_score

test_x = np.asanyarray(test[['ENGINESIZE']])
test_y = np.asanyarray(test[['CO2EMISSIONS']])
test_y_ = regr.predict(test_x)

print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y - test_y)))
print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
print("R2-score: %.2f" % r2_score(test_y , test_y))

Mean absolute error: 24.43
Residual sum of squares (MSE): 957.40
R2-score: 0.78

For Fuel Consumption and Emissions

test2_x = np.asanyarray(test[['FUELCONSUMPTION_COMB']])

test2_y = np.asanyarray(test[['CO2EMISSIONS']])

using our trained Linear regression model (regr2) to make predictions on the test
test2_y_ = regr2.predict(test2_x)

This Lline calculates the Mean Absolute Error (MAE), which measures the average ab
print("Mean absolute error: %.2f" % np.mean(np.absolute(test2_y - test2_y)))

This Lline calculates the Residual Sum of Squares (MSE), which measures the averag
print("Residual sum of squares (MSE): %.2f" % np.mean((test2_y - test2_y) ** 2))

This Lline calculates the R-squared (R2) score, which measures the proportion of t
print("R2-score: %.2f" % r2_score(test2_y , test2_y))

Mean absolute error: 20.64
Residual sum of squares (MSE): 822.79
R2-score: 0.81

Exercise

Lets see what the evaluation metrics are if we trained a regression model using the
FUELCONSUMPTION_COMB feature.

Start by selecting FUELCONSUMPTION_COMB as the train_x data from the train
dataframe, then select FUELCONSUMPTION_COMB as the test_x data from the test

dataframe

train_x = train[["FUELCONSUMPTION_COMB"]]
test_x = test[["FUELCONSUMPTION_COMB"]]

» Click here for the solution

Now train a Linear Regression Model using the train_x you created and the

train_y created previously

regr = linear_model.LinearRegression()
regr.fit(train_x, train_y)

v LinearRegression |

LinearRegression()§

» Click here for the solution

Find the predictions using the model's predict function and the test_x data

predictions = regr.predict(test_x)
» Click here for the solution

Finally use the predictions and the test_y data and find the Mean Absolute Error
value using the np.absolute and np.mean function like done previously

#ADD CODE
print("Mean Absolute Error: %.2f" % np.mean(np.absolute(predictions - test2_y)))
Mean Absolute Error: 20.64

» Click here for the solution

We can see that the MAE is much worse when we train using ENGINESIZE than
FUELCONSUMPTION_COMB .

